

Solid Carbide Spiral CNC Router Bits / End Mills for Steel, Stainless Steel & Non Ferrous Metal with AlTiN Coating Speed and Feed Chart

		Chip Load	
Material Group	Speed SFM*	up to 1/4" Dia.	1/4" to 1/2" Dia.
Aluminum/Related Alloys	600 - 1200	.001002	.002004
Brass Bronze	300 - 550	.001002	.002003
Copper/Related Alloys	500 - 900	.001002	.002003
Cast Iron (soft 195bhn)	200 - 500	.001002	.002003
Cast Iron (medium 225bhn)	125 - 300	.001002	.002003
Cast Iron (hard 275bhn)	80 - 300	.0005001	.001002
Magnesium	800 - 1400	.001003	.003005
Monel/Nickel Alloys	65 - 175	.0005001	.001002
Plastics	600 - 1200	.001003	.003006
Steel-Heat Treated (35-40Rc)	150 - 350	.00030005	.0005001
Steel-Heat Treated (40-45Rc)	125 - 275	.00020005	.0005001
Steel-Heat Treated (45Rc)	50 - 200	.00020005	.0005001
Steel-Medium Carbon	175 - 350	.0005001	.001002
Steel, Mold & Die	50 - 250	.0005001	.001002
Steel, Tool	150 - 250	.0005001	.001002
Stainless-Soft	250 - 400	.0005001	.001002
Stainless-Hard	75 - 250	.0005001	.001002
Titanium Alloys	90 - 225	.00030009	.0009002

^{*} Surface Feet/Minute SFM = 0.262 x Dia. x RPM

Replace or Resharpen drills at first sign of dulling or rounding.

Solid Carbide Spiral CNC Router Bits / End Mills for Steel, Stainless Steel & Non Ferrous Metal with AlTiN Coating Speed and Feed Chart

General Endmill Calculations

In order to find the

RPM (Revolution Per Minute)

The speed by which the tool or spindle is rotating.

SFM (Surface Per Minute)

The manufacturer's suggested working velocity of the tool based on geometry, substrate, coatings and workpiece material.

IPM (Inches Per Minute)

The feed rate by which the workpiece material passes by the endmill during production.

IPT (Inches Per Tooth)

The manufacturer's suggested feedrate, measured in .001" increments, as applied to each tooth of the endmill, aka "chip load".

Feed Rate

The distance traveled by the workpiece as the tool revolves one time only.

if you know these	then the math becomes easy
Suggested Surface Feed Per Minute (SFM)	

(see page 1 for material suggestions)

RPM = SFM x 3.82, \div Diameter of tool

Diameter of Tool

Revolutions Per Minute (RPM)

Diameter of Tool

SFM = .262 x RPM x Diameter of tool

RPM

Chip Load

(feed per tooth per revolution) IPM = RPM x Chip Load x Number of flutes

Number of teeth

IPM (inches per minute)

RPM (revolutions per minute) IPT = IPM ÷ RPM ÷ Number of flutes

Number of Flutes on tool

A working example to calculate RPMs...

Whereby you want to run a 3/8" diameter, 4 fluted endmill at the suggested 200 SFM. What are your suggested RPMs?

RPMs = SFM x 3.82. ÷ Diameter of tool

Example... 200 SFM x 3.82, ÷ .375"... equals 2,037 RPM

A working example to calculate the SFM... for the same 3/8" diameter tool when you know that your spindle runs at 18,000 RPMs...

SFM = .262 x RPM x Diameter of tool

Example... .262 SFM x 18,000 x .375"... equals 1,768.5 SFM

A working example to find the work material's suggested feed-rate, for the same 3/8" diameter, 4 fluted tool, when I know the spindle is running at 2,500 RPM and a chip load of .0025" per tooth...

$IPM = RPM \times Chip Load \times Number of flutes$

Example... 2,500 x .0025" x 4... equals 25 IPM (inches per minute)

A working example to see if your chip load is correct, for a 3/8" diameter, 2 fluted tool routing aluminum at 5,000 RPMs at 45 IPM feed...

IPT = IPM ÷ RPM ÷ Number of flutes

Example... 45 ÷ 5,000 ÷ 2 flutes... equals .0045" per tooth

